
Alone Together: Patterns of Collaboration in
Free and Open Source Software Projects

Ph.D. iSchool at Syracuse University James Howison Post-doc CMU Computer Science
http://james.howison.name

How do community-based FLOSS projects organize their work?

Why do they work this way?

So What?

Durat ion in Days

●● ●● ● ●●● ●

● ●●●● ●● ●

fire

gaim

0 100 200 300 400

Individual and Short Tasks,
layered on each other, dominate

Complex work is often deferred until
other tasks change the codebase to

make them

Tasks longer than 100 days show early supporting work, often
requests or 'votes'. Production work is clustered; it begins
when other work has made the task easier.

Classification of Tasks by number of unique participants doing
production. Dominance of Solo Work is strongly evident.

Participant Observation

Archival Study
Fire and Gaim: both
community-based instant
messaging clients, relatively
successful in period studied

Organized all archives into
Actions undertaken as part of
Tasks (changes to shared
outputs)

Coded Actions
according to the type
of contribution they
make to the Task.

Classified the Tasks
according to the
number of participants
undertaking different
types of Actions

BibDesk: A community-based reference manager for BibTeX, running on OS X.

Four years participation: Experience suggests individual, layered work and
deferral

Theoretical Implications

Background

Solution 2: Deferral as novel solution

Patterns reflect an emergent alignment of motivations and
resource context, technologies of production and communication.

Conditions for
FLOSS collaboration

CHAPTER 8. DISCUSSION 204

Table 8.1: Conditions for the FLOSS model of organizing

Input
1 Ultra-low upfront investment
2 Individually motivating work
3 Past work is available, non-revokable and non-exhaustable

Output
5 Instantiation is ultra-low cost and near-instant
6 Distribution is ultra-low cost and near-instant

Process
7 Task can be approached in layers
8 Task is rewindable
9 Work and communications are observable
10 Communications support temporal mode switching

Ultra-low upfront investment

Upfront investment, such as raising capital, sets a time-clock running and creates a

hierarchy of control. The over-riding principle of organization in this circumstance

is efficiency: the time-cost of money ensures that the gathered resources must be

used to accomplish tasks in the minimum time available, creating an external push

for deadlines and deliverables. This undermines the ability of the project to defer

difficult work, forcing it to seek to overcome “Needed Step” situations through pre-

planning and inter-personal dependency. This immediately suggests that deferral will

be difficult to employ productively in a commercial software development context.

Upfront investment of capital also creates a hierarchy of control. The originator

of the capital requires a return on investment, either through money (for profit)

or through impact (non-profit). This creates a situation of collective responsibility

amongst the participants which is quite apart from their personal motivations for

participation. This responsibility is met by yielding control, at least at a broad

strategic level, to the funder. Even at a tactical day-to-day level the delegation of

control to managers is a central feature of organization under such circumstances.

Adaptation is much more difficult than commonly acknowledged

Attempted Adaptations
Wikipedia
Highly similar: layerable, rewindable work, low-upfront investment, past
work is non-revokable and non-exhaustible, visible work and
communication. Instantiation and Distribution are near-instant, but
bandwidth costs can be high. Work appears largely individual.

Open Hardware
Effort to apply FLOSS principles to hardware. Hampered by slow
instantiation and distribution costs. Work has focused on informational
representations (e.g. blueprints) and informationalization (e.g. FPGAs).

Policy Advocacy
Some urge a FLOSS approach to democratic input, such as calls for
comment on legislation. Hampered by low layerability and in-direct,
delayed payoffs (payoff is in impact on process, not immediate work).

Time 1

Feature C

Time 3 Time 4+

Feature C

New Feature

Time 3+

Recognition of Feature C
as an alternative to
Needed Step

Dev Time

Buddy Display

Buddy Search

Buddy Search has a functional
dependency on Buddy Display

Buddy Display does not have a
payoff dependency on Buddy

Display (gray to gray)

A rational choice model of participant decisions

Participants choose between working to realize utility from the application or spending
their free time elsewhere.

The expected payoff of working depends on the expected utility of the outcome,
conditioned by the expectation of successful completion of work.

Expectancy-Valance
model of motivation

Deferral and a changing codebase,
can make complex work easier

Research on motivations in FLOSS highlights the role of individual motivations, both
extrinsic (e.g. working for useful software, scratching an itch) and intrinsic (e.g. learning or
fun). The FLOSS environment has little, if any, claim on the time of participants; participants
are volunteers (even if they are working for a firm, the project itself has little coercive ability).
The model presented here is a simplification to explain the dominance of individual work
and clarify the function of deferral. It is based on a rational choice model grounded in the
expectancy-valance model of motivation. Only the simplest model, which makes
assumptions that make the task hardest for the project is presented here. Many of these
assumptions are eventually relaxed, allowing, for example, learning motivations to drive
production without immediate payoff.

Solution 1: Co Work

Time 1 Time 3

Needed Step

Needed Step

Dev Time

New Feature

New Feature

Interpersonal

dependency

Interdependent Collaboration is risky

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 159

is the risk that the agent’s expectations are wrong, and their decision will not lead

to the desired outcome.

E (Bchoice) = Uoutcome × (1−R) (7.3)

The Expectancy-Valance theories of motivation outlined in Chapter 6 helps to

understand risk here, pointing out that there are in fact two different expectancies in

play and a risk at each stage. The first is the expectancy that the actor’s effort e will

result in a certain performance p, which can be written as a probability: P (e → p).

The second is that that performance p will yield the expected outcomes o and thus

the benefit: P (p → o). These probabilities are expressing the probability of the

successful outcome, so there is no need to subtract from 1. Now the equation can be

further restated, with all components being Expected values:

E (Bchoice) = E (Uoutcome)× E (P (e→ p))× E (P (p→ o)) (7.4)

In actually, of course, there are real values for P (e→ p) and P (p→ o), which will

determine whether the agent, having committed to the choice, will in fact receive the

benefit. The agent doesn’t know these real values in advance, but experience may

reveal those to the agents over time. In short the agents can learn that their expec-

tations are wrong, and will attempt to adjust them towards the real values. However

agents are limited in their ability to predict the future regardless of experience due to

its complexity: the agents are therefore said to have be bounded rationality (Simon,

1957). Accordingly we assume that agents are good, but not perfect, judges and are

aware of their limitations, thus E (P (e→ p)) ≡ P (e→ p) and allowing P (e→ p) to

be less than 1 (Assumptions 3 & 4 in Table 7.1).

To illustrate this imagine a rational agent trying to decide whether to sell a magic

wand prop, or to wave it in the air to magically produce money. Uoutcome is the value of

that money, P (e→ p) is 1, since the agent presumably can wave a wand if he chooses

Expected payoff of
working

Expected utility of
improving
application

Expected probability that effort will
lead to performance

(i.e. chance of writing code that
works)

Expected probability that performance
will lead to payoff

(i.e. chance that your code improves the
application sufficiently to get payoff)

Assumptions

functional
dependency

(always)IM protocol library

User Interface

gray shows
'user utility'

utility
dependency

(white to gray)

White without gray
above has no
'user payoff'

Graphical Notation

Solo Work:
Individual, Layered, short and small work is possible

This re-states the problem of Collective Action

Needed Step

New Feature

Time 1 Time 3Dev Time

New Feature

Time 1 Time 3Dev Time

... but complex work is restricted
(Participants can only build a single block)

Network Stack

Email Client

Missing
functional dependency

(no border)

The code cannot run
therefore no payoff

(gray but dotted border)

Complex problems like this are a common reason for working
together; but what are the motivational impacts of co-work in the
FLOSS context?

Two quite different solutions were observed in the empirical work
above.

Decision Model

CHAPTER 7. FORMALIZATION: AN EXPLANATORY MODEL 161

Table 7.1: Model Assumptions (shows which are later relaxed)

Assumption (Justification)

Bounded Rationality
1 Participants will only work for a utility payoff (Parsimony)
2 Participants are motivated only by their own use of the software (Parsi., Lit. and Exp.)
3 Participants are good, but not perfect, judges of task complexity (Parsimony and Exp.)
4 Participants know the limitations of their judgement

(expectations approach reality) (Parsimony and Experience)
Other Assumptions

5 All participants have the same set of skills and availability (Parsimony)
6 Participants only know their free time for the next turn (Parsimony and Experience)
7 There are no exogenous sources of code or solutions (Parsimony)
8 Participants can build on existing layers without assistance from authors (Experience)
9 Contributions are always shared under an open source license

(non-revokable, no royalties, allows derivative works) (Parsimony, Lit. and Exp.)

The model considers agents who are potential developers to a FLOSS project. It

is assumed that agents have a limited amount of spare time, outside their normal

course of life including things such as paid work, family life etc. It is also assumed

that these agents regularly use the software outside their spare time, perhaps for

work, for study or for managing a family vacation. This assumption is motivated

by the experience in BibDesk, where the “real-life” use of the software for academic

writing was important, as described in Chapter 3.

Initially it is assumed that agents are only motivated by a desire to improve the

software so that it improves the effectiveness of their other activities (Assumption 2 in

Table 7.1). That is to say that their motivations for participation are entirely instru-

mental. (This assumption will be relaxed later). The improvement in effectiveness is

therefore the value of Uoutcome and is known to the agent (E (Uoutcome) = Uoutcome).

The regular use of the software allows the agent to see opportunities to improve

the software (and thereby the effectiveness of the rest of their activities). These

opportunities could be to remove annoyances, such as a clunky interface or data-loss

risking bugs, or to extend the capabilities of the software through new features. In

terms of the simplification of software development described above both of these

Reliance on others to achieve a payoff makes your link from
performance to outcome dependent on their link from effort to
performance.
In algebraic terms their e⟶p becomes your p⟶o
Concurrent co-work also increases coordination costs, which can be
modeled as an additional risk of failure at e⟶p
Sequential co-work would avoid coordination costs, but introduces a
payoff delay discount

•

•
•

•

Complex work is deferred (accepted as desirable but not attempted.
Other, less complex work is undertaken as individual work
Participants eventually realize that the less complex work has made the
complex work easier, and it can now be undertaken as individual work

•
•
•

Release Notes Dev Email Bug Tracker RFE TrackerUser Forum

TaskOutcome

Task

Relevant

Documents

TaskOutcome

Task

Relevant

Documents

TaskOutcome

Task

Relevant

Documents

CVS

Note that a single

Document can be

relevant to more

than one Task

Outcome (and

therefore Task)

Search and assign

Relevant Documents

There is a debate in the Management literature regarding the determinants of interdependency; does it flow from
task requirements, or is it an emergent property? This work adds a focus on the resource environment, arguing
that volunteer work without upfront capital, together with a layerable task undertaken through lean media
articulates well with low interdependency work.

Evolving Task

Definitions

Individual

Preferences

Technological

Affordances

(esp. layerability

& media)

Structurational Co-evolution

Resource

environment

(Upfront capital

and employees vs

volunteers)

Appropriate

Coordination

Model

Performance

One

Many

Fit

Dependencies

Actors Tasks

Resources

Evolving Task

Definitions

Individual

Preferences

Appropriate

Coordination

Model

Performance

One

Many

Fit

Technological

Affordances

Structurational Co-evolution

Dependencies

Actors Tasks

Resources

Unchanging

Task

Requirements

Appropriate

Coordination

Model

Performance

One

Many

Fit

Dependencies

Actors Tasks

Resources

e.g. March and Simon (1958), Mintzberg
(1979), Thompson (1967), Van de Ven et
al (1976), Malone and Crowston (1994)

e.g. Shea and Guzzo (1989), Wageman
(1995), Wageman and Gordon (2005),
Rico and Cohen (2006)

Contribution of this dissertation Commercial Software Development
Efforts to adapt FLOSS to internal, commercial environments (e.g. Inner
Source) face issues with up-front investment and deadlines, undermining
immediate payoff motivations and usefulness of deferral. Hybridization
undermines some of the factors that make FLOSS work.

